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Front-Form Hamiltonian, Path Integral, and BRST
Formulations of the Nonlinear Sigma Model
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The nonlinear sigma model in one-space one-time dimension is considered on the light-
front. The front-form theory is seen to possess a set of three first-class constraints and
consequently it possesses a local vector gauge symmetry. This is in contrast to the usual
instant-form theory, which is well known to be a gauge noninvariant theory possessing
a set of four second-class constraints. The front-form Hamiltonian, path integral, and
BRST formulations of this theory are investigated under some specific gauge choices.
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1. INTRODUCTION

The ON) nonlinear sigma models (NLSM) in one-space one-time
((14+1)-) dimension (Calleret al,, 1969; Candelast al, 1985; Colemaret al,
1969; Henneaux and Mezincescu, 1985; Kulshresktha., 1993a; Maharana,
1983a,b; Mitra and Rajaraman, 1990a,b; Ruehl, 1991a,b, 1993, 1995, 1996;
Zamolodchikov and Zamolodchikov, 1979), where the field sigma is a real
N-component field, provide a laboratory for the various nonperturbative tech-
nigues, e.g., M-expansion (Ruehl, 1991a,b, 1993, 1995, 1996), operator product
expansion, and the low energy theorems (Cadkal, 1969; Colemasetal., 1969).
These models are characterized by features like renormalization and asymptotic
freedom common with that of quantum chromodynamics and exhibit a nonper-
turbative particle spectrum, have no intrinsic scale parameter, possess topolog-
ical charges, and are very crucial in the context of conformal (Ruehl, 1991a,b,
1993, 1995, 1996) and string field theories (Candetad., 1985; Henneaux and
Mezincescu, 1985;) where they appear in the classical limit (Calieh, 1969;
Colemaret al,, 1969).
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The Hamiltonian formulation of the gauge-noninvariant (GNINMNLSM
in (14+1)-dimension has been studied in Maharana (1983a) and its two gauge-
invariant (Gl) versions have been constructed in Kulshresbhthal. (1993a),
where the Hamiltonian (Dirac, 1950, 1964) and Becchi—Rouet-Stora and Tyutin
(BRST) (Becchetal, 1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998;
Kulshreshtha and Kulshreshtha, 1998; Kulshreshtlaé, 1993b, 1994a,b,c, 1995,
1999; Nemeschanslat al,, 1998; Tyutini, 1975) quantization of these GI models
have also been studied in detail. In the present work, we propose to investigate the
canonical structure, constrained dynamics, and Hamiltonian (Dirac, 1950, 1964),
path integral, and BRST (Beccht al, 1974; Henneaux and Teitelboim, 1992;
Kulshreshtha, 1998;Kulshreshtha and Kulshreshtha, 1998; Kulshreshtida
1993b, 1994a,b,c, 1995, 1999; Nemescharetkgl., 1998; Tyutini, 1975) for-
mulations of this model on the light-front (LF), i.e., on the hyperplanes: light-
cone (LC) timext =t = (x° + x%)/+/2 = constant (Dirac, 1949; for a recent
review see, e.g., Brodslat al. 1998). The Hamiltonian and BRST formulations
of this NLSM in the usual instant form (IF) of dynamics (on the hyperplanes
x% = constant) (Dirac, 1949; for a recent review see, e.g., Brodsly)., 1998)
have been investigated in Kulshreshétal. (1993). The IF theory (Kulshreshtha
etal.1993a) is well known to be a GNI theory possessing a set of four second-class
constraints (Maharana, 1983a,b; Mitra and Rajaraman, 1990a,b; Kulshreshtha
et al, 1993a). On the other hand, the front-form (FF) theory under the present in-
vestigation is seen to possess a set of three first-class constraints, and consequently
it describes a Gl theory. The FF Hamiltonian and path integral formulation of this
model has been investigated under some specific gauges in the present work.

Also, because the LF coordinates are not related to the conventional IF coor-
dinates by a finite Lorentz transformation, the descriptions of the same physical
result may be different in the IF and the FF. In fact, the quantization of relativistic
field theories at fixed LC time proposed by Dirac (1989; for a recent review see,
e.g., Brodskyet al,, 1998) has very important applications and the LF variables are
very useful notonly in field theories but also in the description of string theories and
D-brane physics. In the LC quantization (LCQ) of gauge theories the transverse
degrees of freedom of the gauge field can be imediately identified as the dynamical
degrees of freedom, and as a result, the LCQ remains very economical in display-
ing the relevant degrees of freedom leading directly to the physical Hilbert space.
In the context of LCQ of two-dimensional field theories, it is very often found that
atheory thatis gauge anomalous in the IF is no longer gauge anomalous (and there-
fore gauge invariant) in the FF/LCQ, as seen in the present case of NLSM. Also, in
the LCQ, there is usually no conflict with the microcausality, which is in contrast
with the usual IF quantization. Also, the FF has seven kinematical Poincare gen-
erators including the Lorentz boost transformations compared to only six in the
usual IF framework. The advantage of the FF/LCQ over that of the conventional
IF quantization is best illustrated in a recent review (Brodsksl., 1998).
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However, in the usual Hamiltonian formulation of a Gl theory under some
gauge-fixing conditions, one necessarily destroys the gauge invariance of the the-
ory by fixing the gauge (which converts a set of first-class constraints into a set
of second-class constraints, implying a breaking of gauge invariance under gauge
fixing). To achieve the quantization of a Gl theory such that the gauge invariance
of the theory is maintained even under gauge fixing, one goes to a more gen-
eralized procedure called the BRST formulation (Beathal, 1974; Henneaux
and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998;
Kulshreshtheet al, 1993b, 1994a,b,c, 1995, 1999; Nemescharetkgl., 1998;
Tyutini, 1975). In the BRST formulation of a Gl theory, the theory is rewritten as
a quantum system that possesses a generalized gauge invariance called the BRST
symmetry. For this, one enlarges the Hilbert space of the Gl theory and replaces the
notion of the gauge transformation, which shifts operators-bymber functions,
by a BRST transformation, which mixes the operators having different statistics.
In view of this, one introduces new anticommuting varialdesndc called the
Faddeev—Popov ghost and antighost fields, which are Grassmann numbers on the
classical level and operators in the quantized theory, and a commuting vdriable
called the Nakanishi—Lautrup field (Bece&tial,, 1974; Henneaux and Teitelboim,
1992; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998; Kulshreshtha
etal, 1993b, 1994a,b,c, 1995, 1999; Nemeschamrslgl, 1998; Tyutini, 1975).

Inthe BRST formulation of atheory one thus embeds a Gl theory into a BRST-
invariant system, and the quantum Hamiltonian of the system (which includes the
gauge-fixing contribution) commutes with the BRST charge oper@tas well
as with the anti-BRST charge opera@r The new symmetry of the system (the
BRST symmetry) that replaces the gauge invariance is maintained (even under
gauge fixing) and hence projecting any state onto the sector of BRST and anti-
BRST invariant states yields a theory that is isomorphic to the original Gl theory.
The unitarity and consistency of the BRST-invariant theory described by the gauge-
fixed quantum Lagrangian is guaranteed by the conservation and nilpotency of the
BRST chargeQ.

In the next section, we briefly consider the basics of the&N(LSM
(Kulshreshthaet al,, 1993a; Maharana, 1983a,b; Mitra and Rajaraman, 1990a,b),
in the IF of dynamics (Kulshreshthet al., 1993a). In Section 3, we study the
Hamiltonian and path integral formulations of this model on the LF under gauge
fixing and in Section 4, its BRST formulation under some specific LC gauges. The
summary and discussions are finally given in Section 5.

2. THE INSTANT-FORM THEORY

The ON)-NLSM in one-space one-time dimension in the usual IF (i.e., on
the hyperplanes® = constant) is described by the action (Callenal., 1969;
Candelast al,, 1985; Colemaret al, 1969; Henneaux and Mezincescu, 1985;
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Kulshreshthaet al,, 1993a; Maharana, 1983a,b; Mitra and Rajaraman, 1990a,b;
Ruehl, 1991a,b, 1993, 1995, 1996; Zamolodchikov and Zamolodchikov, 1979):

S = /%’N dx dt (2.1a)
N 1 5
5 = |:§3Mak8”0k + A(Uk — 1)i| k=1,2,...,N (2.1b)
1
= [5(53—03)“(63—1)} k=1,2,...,N (2.10)
g"’ = diag+1, —-1) (2.1d)

Herec = [ok(x,t);k = 1, 2,..., N]isamultiplet ofN real scalar fields in &1)-
dimension and.(x, t) is another scalar field. The overdots and primes denote the
time and space derivatives respectively. The figl, t) maps the two-dimensional
space-time into th&l-dimensional internal manifold whose coordinatesa(e,

t). In the above equation, the first term corresponds to a massless boson (which is
equivalent to a massless fermion), and the second term is the usual term involv-
ing the nonlinear constrainsf — 1~ 0) and the auxiliary field.. This model is

seen to possess a set of four second-class constraints (Kulshresatha993a;
Maharana, 1983a,b; Mitra and Rajaraman, 1990a,b):

p1=p~0 (2.2a)
p2=[o¢—1]~0 (2.2b)
p3 = 20y = 0 (2.2¢)
pa = (2MZ + 4102 + 201 0y) ~ 0 (2.2d)

where p; is a primary constraint and,, p3, and p4 are secondary constraints.
HereIlx and p;, are the momenta canonically conjugate respectivekytand

A. The nonvanishing equal-time Dirac brackets (DBs) of the theory are given by
(Kulshreshthat al, 1993a; Maharana, 1983; Mitra and Rajaraman, 1990a,b).

{ITe(x), Dm(Y)}o = —%[a@(x)nm(y) — Me(X)om(y)] 6(x —y)  (2.33)

(0.0 Tl = [0 — 95 sy (230

K
For achieving the canonical quantization of the theory, one encounters the problem
of operator ordering while going from DBs to the commutation relations. This
problem could, however, be resolved as explained in Maharana (1983a,b) and
Kulshreshthat al.(1993a) by demanding that all the fields and field momenta after
quantization become hermition operators and that all the canonical commutation
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relations be consistent with the hermiticity of these operators (Kulshresh#ha
1993a; Maharana, 1983a,b).

3. THE LIGHT-FRONT THEORY

In order to study the theory on the LF (i.e., on the hyperplattes: (x° +
x1)/+/2 =constant) one defines the LC coordinates:= [(x° + x)/+/2] and
then writes all the quantities involved in the action in termsdfnstead ok and
x! (Dirac, 1949; for a recent review see. e.g., Brodsksl., 1998). The action of
the theory on the LF thus reads

S= /i”dx*dx‘ (3.1a)
7 = [(3+00)(3-01) + A(0? — 1)] (3.1b)
drox = (oK £ 0y)/V/2 (3.1c)

As before, in (3.1b), the first term corresponds to a massless boson (which is equiv-
alent to a massless fermion), and the second term is the usual term involving the
nonlinear constraint§&? — 1) ~ 0] and the auxiliary field.. The Euler—Lagrange
equations obtained frory’ (3.1) are

[040_0k —Aok] =0 (3.2a)
[6¢-1]=0 (3.2b)

3.1. The FF Hamiltonian and Path Integral Formulations
The LC canonical momenta for the above NLSM obtained fran3.1) are
07

Ik = 3(3+O’k) = [370'k] (33&)
e
e (3.3b)

Here,I1y and p, are the momenta canonically conjugate respectivedy tnda.
Also the above equations imply that the theory possesses two primary constraints:

x1=p~0 (3.4a)
x2 =[x —0_ox] =0 (3.4b)
The canonical Hamiltonian density corresponding£as

g = [Me(@0) + Pi(,2) — 7] = [~(0F — 1)] (35)



1946 Kulshreshtha and Kulshreshtha

After including the primary constraintg; and x» in the canonical Hamiltonian
density c/7¢ with the help of Lagrange multiplietsandv, one can write the total
Hamiltonian density=7; as

Iy = [-1(0¢ = 1) + pu+ (T — 3-0x)v] (3.6)

The Hamiltons equations obtained from the total Hamiltortign= [ =77 dx~
are

dHr

dpop = —" = 3.7
+0k oTI, v (3.79)
aH
—0, Ty = 87: =[-2h o + d_V] (3.7b)
aHr
o= ——=u 3.7¢c
+ T (3.7¢)
aH
0, p = a—xT = [~(e2 - 1)] (3.7d)
dHr
du= =0 3.7
+U a1, (3.7€)
aH
3, T, = 3—UT = P (3.7f)
IHr
AV = =0 3.7
+V aTl, (3.79)
aH
—9,T1, = 3—VT = [Tk — 8_01] (3.7h)

These are the equations of motion that preserve the constraints of the jheory
andy; in the course of time. For the equal LC time'(= y™) Poisson brackt },,
of two functionsA and B, we choose the convention

o IAX) 9B(y)  dA(X) B(y)
{A(X), B(Y)lp -—fdz Xa:[aqa(z)apa(z) P2 8qa(2)} &9

demanding that primary constraigt be preserved in the course of time, and we
obtain the secondary Gauss law constraint of the theory as

x3 = {x1, J7lp = [of —1] ~0. (3.9)

Now the preservation of, and xz for all time does not give rise to any fur-
ther constraints. The theory is thus seen to possess a set of three congtraints
i=123):

x1=p.~0 (3.10a)
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x2 =[x —d-0ox] # 0 (3.10b)
xs=[of—1]~0 (3.10c)

The matrix of the Poisson brackets of the constrainfsiamely,Ss(Ww—, z7) :=
{x«(W™), xg(z7)}p, is then calculated. The nonvanishing matrix elements of the
matrix S,s(Ww~, z7) (with the arguments of the field variables being suppressed)
are

S = [<20_8(w~ — 27)] (3.11a)
S3=—Sp=[-20ksW" —2Z7)] (3.11b)

The inverse of the matrig,s does not exist and therefore the matrix is singular,
implying that the set of constrainjg is first-class and that the theory is a Gl theory
(Mitra and Rajaraman, 1990a,b). In fact, the action of theory is seen to be invariant
under the local vector gauge transformation (LVGT)

Sox=pB OSllk=0d B Sv=25.8 (3.12a)
Sk =8U =8, =8I, =5, =0 (3.12b)

whereg = B(x~, xT) is an arbitrary function of its arguments.
The generator of the above LVGT is the charge operator of the theory

J* =/j+dx‘ :/dx‘[ﬁ(a,ok)] (3.13)
The current operator of the theory is
J- :/j’dx’ =/dx’[ﬂ(a+ak)] (3.14)

The divergence of the vector-current density, namely/ (=, j* +0d_j7), is
therefore seento vanish. Thisimplies that the theory possesses at the classical level,
a local vector gauge symmetry. We now proceed to quantize the theory under the
gauge

G=xr=0 (3.15)
Under this gauge, the total set of constraints of the theory becomes
Vi=x1=p~0 (3.16a)
V2 = x2 =[x — d-0x] = 0 (3.16b)
Y3 =x3=[0f— 1]~ 0 (3.16¢)
Y= 5=1=0 (3.16d)

The matrix of the Poisson brackets of the constraifjtsnamely, Tog(W, 2) :=
{Ye(W), ¥5(2)}p, is then calculated. The nonvanishing matrix elements of the
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matrix Top (W, 2) (with the arguments of the field variables being suppressed
again) are

Tiu=—Ty = —8(W7 — Zi) (317&)
Too = —20_8(W~ — 27) (3.17b)
Tog = —Tzo = —20¢ (W™ — 27) (3.17¢c)

The inverse of the matrik,s exists and the matrix is nonsingular. The nonvanishing
elements of the inverse of the matfiys, i.e., the elements of the matri¥ (1)
(with the arguments of the field variables being suppressed once again), are

(T Da=—T Ha=86w —2) (3.18a)
(T N2z =—(T Dz = [Z%Jb‘(w‘ -Z) (3.18b)
(T Naz = [glkz} 9-6(w™ —27) (3.18c)

with
[z 10Ty ) =Lt —y) @19)

and
[l det(Tup) 1" = 20k S(W™ — 27) (3.20)

Now following the Dirac quantization procedure in the Hamiltonian formu-
lation, one finds that there do not exist any nonvanishing equal LC time commu-
tators for this theory under the gauge=0. The same is seen to hold true for
the quantization of the theory under some other gauge-fixing conditions such as
(A —0ok)=0, (A —TIIx) =0, and { — ox — IIx) = 0. This is an interesting result
to be noted here and its consequences need to be studied further involving the
methods of constraint quantization. The path integral quantization of this theory
is, however, possible as usual under all the above gauge-fixing conditions. In the
following, we illustrate the path integral quantization of this theory under the gauge
A =0, as an example. Also, for later use (in the next section), for considering the
BRST formulation of our Gl theory, we convert the total Hamiltonian density
into the first-order Lagrangian density

210 = [Mk(@101) + Px(042) + Mu(d,u) + Ty(3,v) — 4] (3.21a)
= [1(0? — 1) + (9-0)(d+ oK) + Tu(d;u) + My(3;, V)] (3.21b)

In the above equation the termpg(d, A — u) andI1k(d.,.ox — V) drop out in view
of the Hamiltons equations of the theory.
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The transition to quantum theory in the path integral formulation is made
by writing the vacuum-to-vacuum transition amplitude called the generating func-
tionalz[ J ] in the presence of external source currehtsnder the gauge=A~ 0
as (Henneaux and Teitelboim, 1992; Nemeschaeslay, 1988)

Z[3] = /[du] exp [i /olx+ dx [Ji¢! + A(of — 1)
(-0 o) + Tu(0,0) + nv(a+v)] (3.222)

where¢' are the phase space variables
¢' = (0 A, u,V) (3.22b)
and the functional measurd|] for the above generating functional is

[du] = [2, okd(x™ — y7)][dow][dTTi][dA][dp][d U]
[dIT,][dV][dITy]8[(pA)] ~ OJ8[(TTk — d—ok) ~ O]
8[ (o — 1) ~ 0]8[(x) ~ 0] (3.22¢)

4. THE BRST FORMULATION

We now rewrite our GNLSM which is Gl as a quantum system that possesses
the generalized gauge invariance called BRST symmetry. For this, we first enlarge
the Hilbert space of our GI GNLSM and replace the notion of gauge transformation,
which shifts operators bg-number functions, by a BRST transformation, which
mixes operators with Bose and Fermi statistics. We then introduce new anticom-
muting variable andc (Grassmann numbers on the classical level, operators in
the quantized theory) and a commuting variab{ealled the Nakamishi—Lautrup
field) such that (Becclgt al, 1974; Henneaux and Teitelboim, 1992; Kulshreshtha,
1998; Kulshreshtha and Kulshreshtha, 1998; Kulshrestthla 1993b, 1994a,b,c,
1995, 1999; Nemeschanskyal., 1998; Tyutini, 1975):

Sox=c SMx=0.c dv=a.c (4.1a)
Sh=8u=248M,=3I,=8p,. =0 (4.1b)
s5c=0 dc=b Sb=0 (4.1c)

with the propertys2 = 0. We now define a BRST-invariant function of the dynam-
ical variaples to be a functiof (I, p;, Iy, Iy, Po, ¢, Iz, ok, A, U, Vv, b, ¢, C)
suchthat f = 0.
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4.1. Gauge Fixing in the BRST Formulism

Permorming gauge fixing in the BRST formalism implies adding to the first-
order Lagrangian density 5, a trivial BRST-invariant function (Becchit al.,
1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha and
Kulshreshtha, 1998; Kulshreshthaet al, 1993b, 1994a,b,c, 1995, 1999;
Nemeschanskgt al,, 1998; Tyutini, 1975). We thus write

Y arst = [,\(akz — 1) + (0_0)(d:.0k) + My(d4u) + MMy (3, V)

+3|:E(3+8+ak + 04 — %b} (4.2)

The last term in the above equation is the extra BRST-invariant gauge-fixing term.
After one integration by parts, the above equation can now be written as

Lapst = |:A(a|(2 — 1) + (0_0)(d:.0k) + (D4 u) + MMy (3, V)

+b(04 8,0k 4+ 941) — %bz + (a@(am} (4.3)

Proceeding classically, the Euler—Lagrange equatiob feads
—b =1[8,0;0k + 3;A] (4.4)
The requirementb = 0 then implies
—8b = [8 0,040k + 80,1 (4.5)
which in turn implies
3,9,.c=0 (4.6)

The above equation is also an Euler-Lagrange equation obtained by the variation of
Zgrst With respect ta. In introducing momenta one has to be careful in defining
those for the fermionic variables. We thus define the bosonic momenta in the usual
manner so that
d
=—Y =b 4.7

Ps. 3(3, 1) BRST (4.7)

but for the fermionic momenta with directional derivatives we set

<« —

N 0
<, —— = (d,C Mg= ——
RSy, 0) ) ©7 9(2.0)

implying that the variable canonically conjugatedas (9,.c) and the variable
conjugate ta'is (9,.c). For writing the Hamiltonian density from the Lagrangian

M = Sarsr = (0:0)  (4.8)
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density in the usual manner we remember that the former has to be Hermitian so
that

erst = [Tk(910k) + Pi(0+A) + My(94u) + Iy (9+V)
T1(0,) + (0:)TTe — Zgsd] (4.92)

— [ — P, (0,050 — D4A) — %(px)2 — (o2 -1) + ncnc} (4.9b)

We can check the consistency of (4.8) and (4.9) by looking at Hamilton’s equations
for the fermionic variables, i.e.,

5 )
8+C = 3—1_[‘: O/ERST 8+C = C/%RSTa—l_[E (410)

Thus we see that

a —
dallg a
is in agreement with (4.8). For the operatoys, d.,.c andd, c, one needs to satisfy
the anticommutation relations 6f ¢ with c or of 4,.C with ¢, but not ofc with c.

In generalc andc are independent canonical variables and one assumes that

{Ie, Mg} = {c,c} =0  d4{c,c} =0 (4.12a)
{0+C, ¢} = (=1){9+c, C} (4.12b)

where {,} means an anticommutator. We thus see that the anticommulators in
(4.12b) are nontrivial and need to be fixed. In order to fix these, we demand that
c satisfy the Heisenberg equation (Becehal., 1974; Henneaux and Teitelboim,
1992; Kulshreshtha, 1998; Kulshreshtha and Kulshreshtha, 1998; Kulshreshtha
etal, 1993b, 1994a,b,c, 1995, 1999; Nemeschamsla}., 1998; Tyutini, 1975):

9.c= 8% grst=Me  94C= gper Me (4.11)
Cc

[, Hynar] =1 dsC (4.13)
and using the property? = ¢2 = 0 one obtains
[c, grsr] = {04C, C}d4C (4.14)
Equations (4.12)—(4.14) then imply
{9:¢ ¢} = (—1f{asc, ¢} =i (4.15)

Here the minus sign in the above equation is nontrivial and implies the existence
of states with negative norm in the space of state vectors of the theory (Becchi
et al, 1974; Henneaux and Teitelboim, 1992; Kulshreshtha, 1998; Kulshreshtha
and Kulshreshtha, 1998; Kulshreshtba al, 1993b, 1994a,b,c, 1995, 1999;
Nemeschanskgt al,, 1998; Tyutini, 1975).
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4.2. The BRST Charge Operator

The BRST charge operat is the generator of the BRST transformations
(4.1). It is nilpotent and satisfie®? = 0. It mixes operators that satisfy Bose
and fermi statistics. According to its conventional definition, its commutators with
Bose operators and its anticommutators with Fermi operators for the present theory
satisfy

[Gk, Q] = 8+C [Hkv Q]
=[2Ccox — 0_0.C] [A, Q] =0,cC (4.16a)
{€.Q}=[-d_ok+ P+  {3:C, Q}=(-1)[o¢ —1] (4.16b)

All other commutators and anticommutators involviganish. In view of (4.16),
the BRST charge operator of the present theory can be written as

Q= /dx‘[ic[akz — 1]~ i@ Op + T — d_oi]] 4.17)
This equation implies that the set of states satisfying the conditions
Ply) =0 (4.182)
[Tk —d_ok]ly) =0 (4.18b)
[62—1]ly)=0 (4.18c)

belongs to the dynamically stable subspace of stdtesatisfyingQ|vy) = 0, i.e.,
it belong to the set of BRST-invariant states.

In order to understand the condition needed for recovering the physical states
of the theory we rewrite the operatarandcin terms of fermionic annihilation and
creation operators. For this purpose we consider (4.6). The solution of this equation
gives (for the LC timex™ = t) the Heisenberg operatoft) (and correspondingly
c(t)) as

ct)=Gt+F c(t)=G't+Ff (4.19)
which at timet = 0 imply
c=c0)=F c=c0)=Ff (4.20a)
9, c=0,c0=G 9,c=0,c(0) =G (4.20b)
By imposing the conditions
c?=c?={cc}=1{0,60,¢c}=0 (4.21a)
{d,c,c} =i = —{d,c,c} (4.21b)
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we then obtain
FP=FP2=(F', F}={G',G} =0 (4.22a)
(GI,F}=i {G Fl}=-i (4.22D)
We now let|0) denote the fermionic vacuum for which
G|0)=F|0)=0 (4.23)
Defining|0) to have norm one, (4.22b) implies
(OFGTI0) =i  (O|GFT|0) = —i (4.24)
so that
G'o)y£0  FT0o)#£0 (4.25)

The theory is thus seen to possess negative norm states in the fermionic sector.
The existence of these negative norm states as free states of the fermionic part of
“grst IS however irrelevant to the existence of physical states in the orthogonal
subspace of the Hilbert space.

In terms of annihilation and creation operators

" 1
S [_ 0, (0,050 — D4 A) — E(p,\)z — Mo - 1)+ GTG} (4.26)
and the BRST charge operatQris
Q=/dx—[ip(ak2_1)—iG(pan_a,ak)] 4.27)

Now because&|y) = 0, the set of states annihilated Qycontains not only the
set of states for which (4.18) hold but also additional states for which

Bly) =Dly) =0 (4.28a)
Puly) #0 (4.28b)
[Tk — d_ow]l¥) #0 (4.28¢)
[07 —1]ly) #0 (4.28d)
The Hamiltonian is also invariant under the anti-BRST transformation given by
Sox = —C OMx=—0.C ov=—0,C (4.29a)
5% =8u=3p, =3I, =4M, =0 (4.29b)

5C = c=-b b=0 (4.29¢)
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with the generator or anti-BRST charge
g= / dx [itfof — 1] + (0,0 + Mc— -] (4.30a)

= /dx*[—i Fi(of — 1) +iGT(p; + Mk — d_0)] (4.30b)

We also have

9+ Q =[Q, Hers1 =0 (4.31a)

9,Q = [Q, Hgrs1] =0 (4.31b)
with

Hgrst = /dX OngST (431C)

and we further impose the dual condition that b@thand(s annihilate physical
states, implying that

Qly)=0 and Qly)=0 (4.32)

The states for which (4.18) hold, satisfy both of these conditions and, in fact, are
the only states satisfying both of these conditions, since, although with (4.22)

G'G = -GG (4.33)

there are no states of this operator w@h|0) = 0 andFf|0) = 0 [cf. (4.25)], and
hence no free eigenstates of the fermionic partigkst that are annihilated by
each ofG, G', F, Ff. Thus the only states satisfying (4.32) are those satisfying
the constraints of the theory.

Further, the states for which (4.18) hold satisfy both the conditions (4.32) and
infact, are the only states satisfying both of these conditions because in view of
(4.21) one cannot have simultaneous)\p, c andc, d..c, applied to|y) to give
zero. Thus the only states satisfying (4.32) are those that satisfy the constraints of
the theory and they belong to the set of BRST-invariant and anti-BRST-invariant
states.

Alternatively, one can understand the above point in terms of fermionic an-
nihilation and creation operators as follows. The condit@g-) = 0 implies that
the set of states annihilated kycontains not only the states for which (4.18) hold
but also additional states for which (4.28) hold. Howe@) = 0 guarantees
that the set of states annihilated Qycontains only the states for which (4.18)
hold, simply becaus&t|y) # 0 andFf|y) = 0. Thus in this alternative way also
we see that the states satisfyi@jy) = Q|v) = 0 (i.e., satisfying (4.32)) are
only those states that satisfy the constraints of the theory and also that these states
belong to the set of BRST-invariant and anti-BRST-invariant states.
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5. SUMMARY AND DISCUSSIONS

In this work we have studied the NLSM in the FF, i.e., on the hyperplanes
xt = (x° + x1)/+/2 = constant. The theory in the IF has been studied before rather
widely (Kulshreshtheet al, 1993a; Maharana, 1983a,b; Mitra and Rajaraman,
1990a,b) and it is well known to be a GNI theory possessing a set of four second-
class constraints (Kulshreshtled al, 1993a; Maharana, 1983a,b; Mitra and
Rajaraman, 1990a,b).

The FF theory on the other hand as studied in the present case is seen to
possess a set of three first-class constraints and consequently it describes a Gl
theory. Also for the FF theory studied in the present work there does not exist
any problem with respect to operator ordering as one encounters in the case of the
IF theory (Kulshreshthat al, 1993a; Maharana, 1983a,b; Mitra and Rajaraman,
1990a,b).
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